
ASPERA HIGH-SPEED TRANSFER
Moving the world’s data at maximum speed

ASPERA HIGH-SPEED FILE TRANSFER

2

80 GBIT/S OVER IP USING DPDK
Performance, Code, and Architecture

Charles Shiflett
Developer of next-generation FASP

bear @ us . IBM . com
bear @ asperasoft.com

3

RAPID PROTYPING OF BARE METAL SOLUTIONS

3

Benefits of using DPDK

• Lightweight API that exposes Network and Acceleration Cards
• Rapid Iteration on high performance transport designs as

compared to equivalent code developed as Kernel Module
• Set of performance best practices

- Time, Locking, Memory Alignment, and Synchronization
- Avoids libc and system call interaction when possible

• NUMA aware solution
• Framework for High Performance Userland Direct I/O

FASP NX DESIGN GOAL

4

Goal is to bring industry closer to the data they
are using both within the data center and across

the globe.

• Effectively utilize PCIe based IO on Intel Server platform.
• Solve storage bottleneck using Direct I/O w/ multiple controllers
• Solve network bottleneck using DPDK and link aggregation
• Provide a secure transport solution using Intel AES-NI GCM
• Significantly reduce time spent getting your data set to the CPU

HARDWARE CONFIGURATION

5

5x Intel® DC P3700 NVMe SSD

2x Intel® Xeon®E5-2697 v3

2x Intel® XL710 40 GbE Ethernet QSFP+

ASPERA’S MISSION

Creating next-generation transport technologies

that move the world’s digital assets at maximum speed,

 regardless of file size, transfer distance and network conditions.

6

CHALLENGES WITH TCP AND ALTERNATIVE TECHNOLOGIES

Distance degrades conditions on all networks
• Latency (or Round Trip Times) increase
• Packet losses increase
• Fast networks just as prone to degradation

TCP performance degrades with distance
• Throughput bottleneck becomes more severe with

increased latency and packet loss

TCP does not scale with bandwidth
• TCP designed for low bandwidth
• Adding more bandwidth does not improve throughput

Alternative Technologies
• TCP-based - Network latency and packet loss must be low
• UDP traffic blasters - Inefficient and waste bandwidth
• Data caching - Inappropriate for many large file transfer workflows
• Modified TCP - Improves on TCP performance but insufficient for fast networks
• Data compression - Time consuming and impractical for certain file types
• CDNs & co-lo build outs - High overhead and expensive to scale

 7

FASP™: HIGH-PERFORMANCE TRANSPORT

Maximum transfer speed
• Optimal end-to-end throughput efficiency
• Transfer performance scales with bandwidth independent of transfer distance

and resilient to packet loss

Congestion Avoidance and Policy Control
• Automatic, full utilization of available bandwidth
• On-the-fly prioritization and bandwidth allocation

Uncompromising security and reliability
• Secure, user/endpoint authentication
• AES-128 cryptography in transit and at-rest

Scalable management, monitoring and control
• Real-time progress, performance and bandwidth utilization
• Detailed transfer history, logging, and manifest

Low Overhead
• Less than 0.1% overhead on 30% packet loss
• High performance with large files or large sets of small files

Resulting in
• Transfers up to thousands of times faster than FTP
• Precise and predictable transfer times
• Extreme scalability (concurrency and throughput)

8

LAN TRANSFER RESULTS IN GBIT PER SECOND

9

0

10

20

30

40

50

60

70

80

SSH
AES-128 CTR FTP

iperf
FASP 4x10Gbit
 (Intel® Xeon®
E5-2650 v2)

FASP
 (Intel® Xeon®
E5-2697 v3)

Disk to Disk

Wire Utilization w/o disk

Results from SC 14 showing the relative performance of Network Transfer Technologies

TYPICAL TRANSFER APPLICATION

10

ASPERA NEXT GENERATION FASP

11

AVOIDING STALLS

• Synchronization primitives aligned to cache-line, lockless. Example for circular buffer queues;

 Dequeue, claim block: block_id = __sync_fetch_and_add (&sess->block_tail, 1) % block_count;
 Dequeue, consume block: while (!__sync_val_compare_and_swap(&sess->block[block_id].state, 0, 1)) PAUSE;

• Zero copy paradigm critical to good memory performance. Memory copies are VERY expensive!
• Memory copies should be avoided at all costs, writes to Memory must be page aligned to avoid read of

destination cacheline
• Solution is to operate on datasets which fit into L3 cache. New tools provide better insight into L3 cache

utilization such that code can be optimized.

• Low latency direct I/O.
• Intel DDIO critical in bringing data into L3 from Storage, Network Adapters, and PCIe Accelerators.

• DPDK provides framework for operating on data streamed into L3 cache
• Avoid TLB misses by using Hugepages
• Avoid NUMA issues and minimize thread preemption.
• Userland IO drivers where possible.

12

EXAMPLE OF ALIGNED/UNALIGNED MEMORY COPY

13

5.7 GB/S copy performance constrained by RFO
9.0 GB/s copy avoids RFO, close to per core limit

* Per channel results via Intel Performance Counter Monitor

OPTIMIZING NETWORK THROUGHPUT

14

• Create network queues which fit into L3. Each queue tied to a specific core.
• Experiment with values to minimize memory, while retaining useful properties:

• Should support bulk allocation
• MAX_RX_BURST < rx_free_thresh < nb_rx_desc (set when assigning queue to port)
• Nb_rx_desc % rx_free_thresh == 0

• Ideally pkts_in_cache % nb_pkts == 0 and nb_pkts == 2^n-1

• PTHRESH/HTHRESH/WTHRESH values feel like black magic, but can have a huge
effect on performance. Start by copying values from example applications.

IMPROVING STORAGE THROUGHPUT

• Traditional storage is built around the idea of moving slow data from disk to memory and then from
memory to application. Memory is used to cache data to improve access speeds.

• Cache structure quickly becomes a bottleneck as transfer speeds exceed 10 gbit/s.
• While individual spinning disks are slow, JBOD’s of 100’s of disk have very high aggregate bandwidth
• Modern SSDs (especially NVMe) is very fast.

• Two solutions for fast data
• Use XFS with direct IO (and/or MMAP)

• Have shown performance at about 40gbit/s with hardware raid and direct attach disks.
• Have shown performance at about 70gbit/s with NVMe SSD.
• Limited by how many devices you can connect to PCIe data link.

• Clustered parallel storage
• Aspera is targeting IBM GPFS (Spectrum) or Lustre based solutions
• Individual nodes can be slow, but by aggregating nodes high performance is achieved
• Both offer direct I/O solutions

15

DC P3700 PERFORMANCE (SINGLE DRIVE)

16

Performance relative to block size (SI Units in MB)

2678 MB/s

1869 MB/s

0

500

1000

1500

2000

2500

3000

128 16 4 1

Write

Synchronous Read

Async Read (AIO)

2800 MB/s

ENCRYPTION IS NOT A BOTTLENECK WITH HW AES-GCM

17

0

0.5

1

1.5

2

2.5

Core i7 X 980
3.33GHz

Xeon E5-2650 v2
2.60GHz

Xeon E5-2697 v3
 2.60GHz

AES 128 GCM Encryption Rate in GB/s per Core

NEW ON THE WIRE PROTOCOL

• Built around AES-128 GCM, which is similar to DTLS (Datagram TLS).

18

AES-128 GCM {
 uint64 IV;
 uint8[] payload;
 uint8[16] MAC;
}

DTLSRecord {
 ContentType type;
 ProtocolVersion version;
 uint16 epoch;
 uint48 sequence_number;
 uint16 length;
 uint8_t[length] payload;
}
MAC {
 uint8[16] hash;
}

FASP4 {
 uint16 stream_id;
 uint8 ver_and_pkt_type;
 uint40 sequence_number;
 uint8[] payload;
 uint8[16] hash; // optional
}

• In the same way it is possible to encapsulate FASP NX header in UDP, will also support
Encapsulating FASP4 in DTLS.

EXAMPLE TRANSFER SESSION USING FASP NX API

19

FASP NX API’S

• Native FASP NX API
• Share hugepage sized regions of memory with client application
• Usable from VM or Native machine
• Enables Zero Copy transfer solutions of non file data
• Dynamically set rate policy, destination IP, and so on.

• Traditional Aspera (ascp) command line tools
• Similar command line to SCP, with FASP NX performance.

• Existing Aspera API
• Faspmgmt
• Web Services
• Rest based Queries

20

FUTURE DIRECTION

• Aspera’s Goal: Transfer Solution to Petascale Datasets
- 1 SI Terabyte in 2 Minutes
- 1 SI Petabyte in 1⅜ Days
- Performance improvements expected to scale relative to PCIe interconnect.

• Better integration with storage systems
 - Take advantage of native APIs to avoid kernel cache.

• Better integration with network hardware
 - Expected to show 100gbit/s transfers using Mellanox ConnectX®-4
 - Query network switch and routers?

• Support wider use cases
 - Compression, Forward Error Correcting Codecs, Berkeley Sockets API

21

THANK YOU
CHARLES SHIFLETT

bear @ us.ibm.com

	Aspera High-speed Transfer
	Aspera High-Speed File Transfer
	Slide Number 3
	FASP NX Design goal
	Hardware Configuration
	Aspera’s mission
	Challenges with TCP and alternative technologies
	fasP™: high-performance transport
	LAN TRANSFER RESULTS in GBIT per SECOND
	Typical transfer Application
	Aspera next generation FASP
	Avoiding STALLS
	EXAMPLE OF ALIGNED/UNALIGNED MEMORY COPY
	OPTIMIZING NETWORK THROUGHPUT
	Improving Storage THROUGHPUT
	DC P3700 Performance (SINGLE DRIVE)
	Encryption is not a bottleneck with HW AES-GCM
	New ON THE WIRE PROTOCOL
	Example Transfer Session using FASP NX API
	FASP NX API’s
	Future direction
	THANK YOU

